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Abstract: Applied Element Method (AEM) is a relatively new and advanced numerical
analysis method by which structural behavior from elastic range to total collapse can be
simulated. AEM combines the advantages and capabilities of Finite Element Method
(FEM) and Discrete Element Method (DEM). The structural system is modeled as an
assemblage of small rigid body elements with this method. The neighboring elements are
connected by pairs of zero-length normal and shear springs. In this study, J2 Von-Mises
Plasticity with AEM is presented. Some 2D numerical models including steel beams are
generated, and the analysis results are compared with FEM results. It can be said that
AEM could be used for numerical analysis of elasto-plasticity for structural systems with
appropriate mesh and connections successfully.
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1. Introduction

The Applied Element Method (AEM) [1] was introduced around the late 90s as a new
method to be able to simulate total behavior of structures from beginning to collapse. Nonlinear
analysis widely has been done mostly all types of structural systems using the Finite Element
Method (FEM), but after the AEM is introduced, this can also be done alternatively with the
latter.

This paper introduces the implementation of one of the most widely used plasticity,
especially on metallic materials, von-Mises plasticity with AEM. The next sections in this
paper briefly, gives some generic information of AEM, applying von-Mises plasticity to the
AEM analysis. Some numerical examples including 2-D cantilever steel beam, unstiffened and
stiffened steel beams are analyzed, and the comparison results are presented.
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Figure 1. Modeling of Structures in AEM [1]

2. Overview of AEM

In AEM all structural domains consist of rigid body elements that are connected with pair
of normal and shear springs across the adjacent edges of the elements. The springs are being
used to define the stresses and strains in that area.

2.1. Formulation of AEM
The degree of freedom is described in the center of the elements. For a 2-D element three

degrees of freedom are defined for one element (Fig. 2). The stiffness matrix for a 2-D element,
which is 6 x 6 matrix, for one pair of elements by applying unit displacement to the related
degree of freedom and by calculating reaction forces while rest of DOFs are supported.

Contact
Point

= dx]

Figure 2. Element Details [2]

The upper left quarter of the stiffness matrix is displayed in Fig. 3.

[ Sin? 6+ o)k, —K,Sin(0+ a)Cos(0+a) | Cos(0+a)K L ?m(a)
+C05"(0+01)K + K Sin(8+a)Cos(6 + ) | - Sin(8+ o)k, LCos(ar)
—K,Sin(0+a)Cos(@+a) | Sin?(0+a)K, Cos(8 + a)K ,LCos(a)
+KSin(0+a)Cos(0+a) | 4 cos?(0+ )X, +8in(0 + o )K s LSin(ct)

Cos(8 + a)K ; LSin(a) Cos(8 + )k, LCos(at) I2Cos? (a)K,,
- Sin(0+ o)k, LCos(a) | +8in(0+ a)K LSin(e) | 4 12Sin?(a)K, ]

Figure 3. Upper left quarter of the stiffness matrix [2]
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The spring stiffnesses K, and K are defined as below equation Eq. (1),
(1) K,=—; Ks=—

where, d is the distance between two springs, t is the thickness of the element, a is the length of
the hatched area (Fig. 1b), E and G are the elasticity and shear modulus of the material,
respectively. For each element all the pairs of spring stiffness matrices are assembled to obtain
the global stiffness matrix.

3. J2 Von-Mises Plasticity with AEM

In the general definition of von Mises criterion [3], plastic yielding starts when the J2
stress deviator invariant reaches a critical value. Mathematically the von Mises yield criterion
is written as below Eq. (2),

2 o,=43);

where, oy is the tensile of yield strength of the material.

3.1. Applying J2 Von-Mises Plasticity to AEM

In the traditional plastic analysis in Finite Element Method (FEM) approach, all
calculations related to the plasticity mostly are done on the gauss point level. On the other hand,
in AEM all calculations related the plasticity must be done on the for each pair of springs.

4. Numerical Examples

In this section, two numerical examples are investigated. All AEM results are obtained
from our software that is being developed using Microsoft Visual C# [4] and Eyeshot which is
a 3" party CAD software component [5]. FEM results are obtained from Ansys WB software

[6].

4.1. Plasticity of an End-Loaded Cantilever Beam

In this example, plasticity of an End-Loaded cantilever beam (Fig. 4) with a rectangular
section is being analyzed [7]. Comparison results between AEM and FEM are presented. The
limit load is found to be around 30 kN as in the reference book. A perfectly plastic von-Mises
material model using Plane Stress Analysis is considered. During the analysis, Force control is
adopted.

Material properties:
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Figure 4. Geometry of End-Loaded Cantilever Beam [7]
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Results of the converged solution for both AEM and FEM in the last increment are
presented below. Displacement contours for vertical direction in AEM and FEM are introduced
in Fig. 5, Fig. 6. All displacement contours indicate that both AEM and FEM show very good
agreement.

Figure 5. Vertical displacement contour in AEM
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Figure 6. Vertical displacement contour in FEM (Ansys)
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To be able to see the plastic behavior during the analysis, below Applied Load vs Vertical
displacement chart at loaded node is presented (Fig. 7). From the chart, it can be said that after
the incrementation of 30 kN, the behavior of plasticity begins.

F (kN) vs u. (mm)

F (kN)

0 5 10 15 20

u at loaded node (mm)

Figure 7. Load-Displacement curve

The other parameter that is important for plastic analysis is accumulated equivalent plastic
strain contours that show which part of the elements is plastic, are presented for AEM and FEM
(Fig. 8, Fig. 9).
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Figure 8. Accumulated equivalent plastic strain contour in AEM
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Figure 9. Accumulated equivalent plastic strain contour in FEM (Ansys)

The same parameter distribution near the supported section of the beam is shown below
in Fig. 10. It can be said that accumulated equivalent plastic strains are increasing linearly from
near the center of the section to the far locations of the beam section as expected.
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Figure 10. Accumulated equivalent plastic strains distribution across the supported
section
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4.2. Plasticity of a w/wo Stiffened Steel Girder

In this example, plasticity of with and without stiffened steel girders with an I section are
being analyzed (Fig. 11). Some comparison results between AEM and FEM are presented. A
bi-linear plastic von-Mises material model using Plane Stress Analysis is considered. During
the analysis, force control is adopted and applied load F is around 150 kN.

F F
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Figure 11. Stiffened Steel Girder Detail (all units are mm)

Some results of the converged solutions for both AEM and FEM in the last increment are
presented below. Firstly, unstiffened steel girder results are presented. Displacement contours
for vertical direction in AEM and FEM are introduced in Fig. 12, Fig. 13. All displacement
contours indicate that both AEM and FEM show good agreement.

uz
Inc : S Displacements (mm})

+0.88838
I +0.49009
+0.0918
-0.30649
-0.70477

-1.10306

-1.50135

-1.89964
-2.29792
-2.69621
-3.0945

-3.49279

-3.89107
I -4.28936
-4.68765

Figure 12. Vertical displacement contour for unstiffened steel girder in AEM
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Figure 13. Vertical displacement contour for unstiffened steel girder in FEM (Ansys)

The other parameter that controls which part of the elements are plastic when exceeding
the yielding stress during the plastic analysis is Von-Mises stress, also called Equivalent stress
contours, are presented for AEM and FEM (Fig. 14, Fig. 15). As can be seen from both figures,
near both support and loading zones, some elements are being plastic which means at the same
time, their equivalent stress values are found beyond yielding stress.
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Figure 14. Von-Mises stress contour for unstiffened steel girder in AEM
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Figure 15. Von-Mises stress contour for unstiffened steel girder in FEM (Ansys)

From both figures (Fig. 16, Fig. 17) it can be said that stiffeners have changed stress
distribution and decreased the stress values around the critical support and loading zones.
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Figure 16. Von-Mises stress contour for stiffened steel girder in AEM



XXIV MEXOYHAPOHA HAYYHA KOH®EPEHLIUA BCY’2024
XXIV INTERNATIONAL SCIENTIFIC CONFERENCE VSU'2024

103.75

- 83.005

‘— 62.261

41.516

20.771
0.025824 Min

Figure 17. Von-Mises stress contour for stiffened steel girder in FEM (Ansys)
Conclusion

The conclusion of the study presented as follows; the Applied Element Method is also
easily applicable when modeling plasticity in structures and giving very promising results as
the alternatives as well. Future works, including the implementation of 3D plasticity and other
types of material plasticity, are planned.
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